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Given a function analytic in an unbounded domain of en with certain estimates
of growth, we construct an entire function approximating it with a certain rate in
some inner domain and give estimates of growth of the approximating function.
This extends well-known results of M. V. Keldysh to several variables and more
general domains. (1993 Academic Press, Inc.

Let Q be a set in the complex plane iC and let f(z) be a continuous func
tion on Q holomorphic in the interior of Q. Well-known results of Keldysh,
Arakelyan, and other authors describe the conditions under which uniform
or tangent approximation by entire functions is possible. We refer to
[ 1, 2, 5] for the exposition of results and more complete references.

We are interested in the problems of control of growth of the
approximating function. Normally, such a control is possible if we
approximate the function f(z) on some set lying inside Q. About 40 years
ago M. V. Keldysh proved a number of results of the following kind. Given
a function analytic in an angle (in a strip) with certain estimates of growth,
it is possible to construct an entire function which approximates the given
one in some interior angle (strip) with a certain rate and to estimate its
order of growth in terms of the order of growth of the given function,
characteristics of the angle (strip), and the rate of approximation.
Keldysh's proofs seem rather complicated. The aim of the present paper is
to suggest a different (and more simple) method to prove results of this
type and to extend these results to several variables and more general
(unbounded) domains.

This becomes possible due to application of Hormander's v-methods.
Being essentially "multidimensional," these tools nonetheless often bring
new results in one complex variable and give rather clear proofs. It is enough
to mention the recent short and elegant proof of Arakelyan's approximation
theorem [6]. Here we try to treat the problems in a similar way.
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Throughout the paper w(z) and ¢J(z) are plurisubharmonic functions in
cn, both possessing the "non-oscillating" property

(U)[l] (z):s -A( -U)[l] (z) + E,

where by u[r](z) we denote sup{u(w): Iz - 11'1 < r}. Assume also that ¢J(z) ~ 0
and 10g(1 + Izl) = o(¢J(z)), Izl ~ 'lJ. For C~ 0 we denote by il, the set

QF.= {ZEe :w(z)< -c¢(z)}

and suppose that

'r/c/>c2: inf{l z l-z21 :ZIEile!,Z2Ecn\ilF.,} ~f r ... e2 >0, (1)

which is a kind of smoothness condition on wand ¢.

THEOREM 1. Letf(z) be an analytic function in ilo satisfying the estimate

Thenfor each c > 0 and each N ~ 1 there exists an entire function g(z) such that

If(z) - g(z)\ :S Ce - N¢lz),

Ig(z)l:s Ce Cmax(N.C/I-((2//;)w+¢lIz), ZE cn,
(2)

(3)

where C does not depend on N.

As we have mentioned already, our main tool is the well-known result of
H6rmander [3]. Here is the version we need.

THEOREM H. Let (J, be a (0, 1) -form in C n with ort. = 0 and

for some plurisubharmonic function 1jJ. Then there exists a solution p 0/ the
equation op = rt. such that

II PII ~ :S ~ II rt.11 ~

with .ji = IjJ + 2 log( 1 + IzI 2).

Pro%/Theorem 1. Set w 1 =w+(c/2)¢(z). Let X(Z)ECOC(e) be a
function with the properties X(z)=1 if zEil'/4' X(z)=O if zECn\ilo,
O:S X(z):S 1, 'r/z. In view of (1), x(z) may be chosen so that 10x(z)l:S Ct. We
construct the approximating function g(z) in the form

g(z) = x(z)f(z) - P(z),



where
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3"" 3"" deC
ufJ(Z) = ux(Z) -/(Z) = :X(Z).
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One can easily see that 1:x(z)I~CICteCr¢(Z). Let M=(8fe)max(N,Ct ).
We have

Since

Z E Q3./8,

we have Mw1(z) ~ max(2N, 2Ct ) (,6(z). Hence

f j:x(z)12e-MUJdZ) dA :5::C2C2! d).
en (l + 1Z 12

)" + 1""" 1 f 00\.0'/4 (1 + Iz12
)" + 1

2 2 J d).
~CICf en (1+lzI 2 )"+1<20.

Note that the right-hand side of the estimate does not depend on N.
By Theorem H (with I/I(z) = MW1(Z) + (n + 1) 10g(1 + Iz/ 2

), which is
clearly plurisubharmonic), the equation ofJ =:x has a solution fJ such that

We estimate IfJ(z)1 first for zEQ3£/8' Set R 1 =min(1, '3£/8.'/4' 'r..3r./4)'

Since o{J = 0 in Q r./4, i.e., (J is hoiomorphic, and the ball B(z, R I) for
Z E Q 3./8 is contained in Q ./4, from the integral estimate (4) we get
(Tn denotes the volume of the unit ball in iCn)

~C2eMUJfRiJl=)(I + IzI2),,+3J 1{J«(We-Mw/<O ~\n+3
B(zR1J (l + 11,1 )

:5:: ~ C C2C.2 (1 + Izl 2)n + 3 eMwfRl](Z) f d)"
...." 2 2 1 I en (1 + 1(12)" + 3'
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that is,
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z E Q3o/8' (5)

where C3 does not depend on N.
For Z E Q, we have If(z) - g(z)1 = IP(z)l. Taking into account that

R] ~r',31/4 and that WI(Z)~ -(eI4)I,6(z) for zEQ3c/4, we get from (5)

If(z) - g(z)1 ~ C3(1 + Izl),' + 3 e(M/2) < (1/41 ¢»[RIl (01

Since we are able to replace N by KN with K> 1 not depending on N,
so that the term (1 + Izl)" + 3 is "swallowed" by exp( - KNI,6), and in view
of the "non-oscillation" property we conclude that (2) holds.

We estimate Ig(z)1 now. For z E Q3"/8' in view of (5) and since w1(0 ~
(-eI4 + e12) 1,6(0 = (eI4) 1,6(0 for (E B(z, Rd, we have

Ig(z)j ~ 11(z)1 + IP(z)1 ~ Crec/¢>(O) + C 3 e Mw f!J(Z)/2

For z E C" \Q 3,,/8 the estimate is slightly different:

Ig(zW ~~ f Ig((W dA
Til B(o. L)

~ ~II (L(z. I) Ix((W If((W d), + L<z, I) IP((W dA)

f ? 1 d),
x . IfJI- e ~ WI -(1-+-1Y-:j2'""")1I-+~3

B(., I) ~

This estimate, together with the previous one and the "non-oscillation"
condition, implies (3). The theorem is proved.

It is easy to obtain results of Keldysh type as corollaries. To show this
denote by W, the angle {z E C: larg zl < aI2}.
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THEOREM 2. Let p = n/(2n - ex), ex ~ n, and let f be an analytic function
in W" If(z)1 ~ Ke K Izil'. Then '11/, I' > 0, Vb E (0, ex) there exists an entire
function g(z), Ig(z)1 ~ Ce c w, such that

If(z) - g(z)1 < 1/e -lzIP,

Remark. If the function f(z) is analytic in some neighborhood of the
origin, it is possible to modify g(z) so that the approximation takes place
near the origin as well, and we get exactly Keldysh's result (see, e.g.,
[2, Chap. IV, B, Theorem 2]).

Proof of Theorem 2. Note that p E (0.5, 1]. We set n = 1 and define
w(z)=lzIPcosp(argz-n) (argz is taken from [0,2n]), I/I(z)=
max{lzll', "II}. In the notations introduced above Q o = W, and the set Q e

for r.<lcospnl contains the angle W,-fi (with {3={3(r.)=(2Ip)
arccos( - 1;) - nip) without some neighborhood of the origin (izi > ,'/2).

For such ill the condition (1) takes place. Choose I; so that {3(£) < b.
Then ill :::J W,. b () { Izi ~,,}. Taking N large enough that Ce - N max{ 1=1". ),I'} <
1/e- 1z1 " in W,_b() {Izl ~}'}, and applying Theorem 1, we get the required
assertion.

Now denote by JIh the strip {z E C: IRe zl < h}.

THEOREM 3. Let p = nl2h and let f be analytic in JIll' log If(z)1 ~

Kel' 11m zl. Then '11/ > 0, VtJ E (0, h), there exists an entire function g(z),
log Ig(z)1 ~ Cel) 11m zl, such that

Remark. The result may be found in [4, 5]. As is easily seen from the
proof below, we can prove more, namely, f(z) can be defined on an infinite
number of strips situated periodically, and the approximation is
simultaneous on all interior strips.

Proof of Theorem 3. Set n = 1, w(z) = -cosh p 1m z· cos pRe z, I/I(z) =

cosh p 1m z. Then ilo = nl" ill; = nh (lil'l arccos" where we denote by n the
set

+y, { 2n }U '=z+k-,zEJI.
k= -x P

We define f(z) to be zero in those components of n where it is not yet
defined. Applying Theorem 1 with r. small enough and N large enough, we
get the assertion we need.

Results of slightly different type may be obtained if we take, for instance,
w = log IFI + C Izil', C> 0, F being an entire function of finite type with
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respect to order p, and r/J = Izi p. We do not formulate the corresponding
statement here and do not concentrate on other domains in C, for which
appropriate functions ill and r/J may be chosen.

Let us look at the situation in several variables. If we are interested in
extending Keldysh's result concerning an angle, we have a rich choice of
cones in C" corresponding to choices of ill and r/J. Below we mention
without proof just one possible result.

For example, take a round cone

':1. < 1.

THEOREM 4. Let N be a positive number. Each function analytic in the
cone Cx for some ':1. E (0, 1) and having order not greater than 2 may be
approximated in each interior cone C(3' f3 E (0, ':1.) without some neighborhood
of the origin, by an entire function of order not greater than 2 with the rate
exp( -N IzI 2

).

Remark. One feels that two (which does not depend on ':1.) is not the
least possible order for the approximation in Cx' Still we do not know how
to choose a better ill in this case.
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